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Word2Vec Overview

Word2vec (Mikolov et al. 2013) is a framework for learning word vectors
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problems  turning banking crises as .. .. problems turning into crises as
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https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecsl.pdf



What's wrong with word2vec?

—0.224

e One vector for each word type y(bank) — | U-130
—0.290

0.276

* Complex characteristics of word use: semantics, syntactic behavior, and connotations

e Polysemous words, e.g., bank, mouse

mouse! : .... a mouse controlling a computer system in 1968.
mouse? : .... a quiet animal like a mouse
bank! : ...a bank can hold the investments in a custodial account ...

bank? : ...as agriculture burgeons on the east bank, the river ...



Static vs. Contextualized
e Problem: Word embeddings are applied in a context

free manner

open a bank account on the river bank

e

(0.3, 0.2, -0.8, ..]

e Solution: Train contextual representations on text

corpus

0.9, -0.2, 1.6, ..] [-1.9, -0.4, 0.1, ..]

open a bank account on the river bank



Contextualized word embeddings

Let’s build a vector for each word conditioned on its context!

JEE GG

( Contextuahzed word embeddlngs
1 ) t ® t *

the movie was terribly
exclting !
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From static word vector to
contextualized word vectors



e FlMo: Deep Contextual Word Embeddings, Al2 &
University of Washington, 2017/

Train Separate Left-to-Right and Apply as “Pre-trained
Right-to-Left LMs Embeddings”
open a bank <s> open a e YTl Ayl e
! ! T T ! !
LSTM [—| LSTM > LSTM LSTM |« LSTM |« LSTM T T T
T T T T T T
<s> open a open a bank

open a bank



ELMo

e NAACL’18: Deep contextualized word representations

e Keyidea:

® Train an LSTM-based language model on some
large corpus

® Use the hidden states of the LSTM for each token
to compute a vector representation of each word




ELMo

Forward Language Model
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How to use ELMo0?

R, = {xiM WL ,‘H |j=1,...,L} « # of layers
{hy¥|j=0,...,L},
hiM = xLM RLM = [ m_lvl F]_LM]

k,0 k Kj K
K,J
L
task _ . @task\ __ .task tasky, LM
ELMO as (Rk: Qtas ) =~y as Z Sjas hk,j
J=0

o yask: allows the task model to scale the entire ELMo vector

. SjtaSk: softmax-normalized weights across layers

* Plug ELMo into any (neural) NLP model: freeze all the LMs
weights and change the input representation to:
[x1; ELMo{*5*]

(could also insert into higher layers)



Use ELMo In practice

https://allennlp.org/elmo

Pre-trained ELMo Models

. . . # LSTM Hidden #
Link(Weights/Options i i
Model File) Parameters Size/Output Highway
i
(Millions) size Layers>
Small weights options 13.6 1024/128 1
Medium weights options 28.0 2048/256 1
Original weights options 93.6 4096/512 2
Original : =
weights options 93.6 4096/512 2
(5.5B)

from allennlp.modules.elmo import Elmo, batch_to_ids

options_file = "https://allennlp.s3.amazonaws.com/models/elmo/2x409
weight_file = "https://allennlp.s3.amazonaws.com/models/elmo/2x4096

# Compute two different representation for each token.

# Each representation is a linear weighted combination for the

# 3 layers in ELMo (i.e., charcnn, the outputs of the two BiLSTM))
elmo = Elmo(options_file, weight_file, 2, dropout=0)

# use batch_to_ids to convert sentences to character ids
sentences = [['First', 'sentence', '.'l, ['Another', '.'l]

character_ids = batch_to_ids(sentences)

embeddings = elmo(character_ids)

Also available in TensorFlow



How to use ELMo?

Problem: Language models only use left context
or right context, but language understanding is

bidirectional.

Why are LMs unidirectional?
Reason 1: Directionality is needed to generate

a well-formed probability distribution.

o We don’tcare about this.

(é '
Reason 2: Words can “see themselves’ in

a bidirectional encoder.



Unidirectional vs. Bidirectional Models

Unidirectional context Bidirectional context
Build representation incrementally Words can “see themselves”
open a bank open a bank
! ! ! I ! !

Layer2 |—>| Layer2 > Layer2 Layer 2 t Layer 2 ) Layer 2
! T ! I ) ! !
Layer2 —>| Layer?2 > Layer2 Layer 2 ) . Layer 2 <_> Layer 2

T T T ! T T

<s> open a <s> open a



BERT

e First released in Oct 2018.

o NAACL’'19: BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

How is BERT different from ELMo?

#1. Unidirectional context vs bidirectional context

#2. LSTMs vs Transformers (will talk later)

#3. The weights are not freezed, called fine-tuning




Bidirectional encoders

* Language models only use left context or right context
(although ELMo used two independent LMs from each
® direction).

Language understandini is bidirectional

Bidirectional RNINs

Bidirectionality is important in language representations:
the movie was terribly exciting !

terribly:
o left context “the movie was”

o right context “exciting !”

Why are LMs unidirectional?



Bidirectional encoders

Language models only use left context or right context

(although ELMo used two independent LMs from each

direction).

Language understanding is bidirectional

Unidirectional context
Build representation incrementally

open a bank
! I T
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Layer2 —| Layer2 [—| Layer2
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Masked language models (MLMS)

® Solution: Mask out 15% of the input words, and then predict the masked words

store gallon

0 0
the man went to the [MASK] to buy a [MASK] of milk

e Too little masking: too expensive to train

. Too much masking: not enough context



Masked language models (MLMs)

A little more complication:

* Rather than always replacing the chosen
words with [MASK], the data generator will
do the following:

* 80% of the time: Replace the word with the
[MASK] token, e.g., my dog is hairy —
my dog is [MASK]

* 10% of the time: Replace the word with a
random word, €.g.,my dog is hairy — my
dog is apple

* 10% of the time: Keep the word un-
changed, €.g.,my dog is hairy — my dog
is hairy. The purpose of this is to bias the
representation towards the actual observed
word.

Usually, [MASK] would not exist when BERT is used in downstream tasks

We probably would not see [mask] in
downstream tasks.



Next sentence prediction (NSP)

Always sample two sentences, predict whether the second sentence is
followed after the first one.

IIlput — [CLS] the man went to [MASK] store [SEP]
he bought a gallon [MASK] milk [SEP]

Label = 1snext

IIlput — [CLS] the man [MASK] to the store [SEP]
penguin [MASK] are flight ##less birds [SEP]

Label — NotNext

Recent papers show that NSP is not necessary, probably it becomes saturated quickly

(Joshi*, Chen* et al, 2019) :SpanBERT: Improving Pre-training by Representing and Predicting Spans (Liu et al, 2019): RoBERTa: A Robustly
Optimized BERT Pretraining Approach



Pre-training and fine-tuning

0.1% | Aardvark

Use the output of the
masked word’s position
to predict the masked word

Possible classes
All English words 10% Improvisation

0% | Zyzzyva

[ FFNN + Softmax ]
BERT

Randomly mask
15% of tokens

[CLS] Let"s stick to [MASK] skit
Input

[CLS]  Let’s stick to improvisatior

Pre-training

85% Spam

15% Not Spam

Classifier }

I 1

BERT

Fine-tuning

Key idea: all the weights are fine-tuned on downstream tasks

512



One pre-trained models Is adapted everywhere

NSP Mask LM Ma% LM \ MN'—'MAD Start/End Span\
= a*

20—
v s ) D R N ™ G P T
e as = = = & 4o >>
BERT . .. ... . .. '> = = P BERT
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Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Maybe this is one of the first popular Foundation model

On the Opportunities and Risks of Foundation Models. https://arxiv.org/abs/2108.07258



https://arxiv.org/abs/2108.07258

Applications
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Effect of Pre—training Task

Effect of Pre-training Task

B BERT-Base M No Next Sent Left-to-Right & No Next Sent
B Left-to-Right & No Next Sent + BiLSTM

MNLI QNLI MRPC SQuAD
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8

Accuracy
o
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e Masked LM (compared to left—to-right LM) is very important on
some tasks, Next Sentence Prediction is important on other tasks.

e Left—to-right model does very poorly on word—level task (SQuAD),
although this is mitigated by BiLSTM



Directionality helps
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e Masked LM takes slightly longer to converge because we

only predict 15% instead of 100%
e But absolute results are much better almost immediately



Scalability - BERT

Effect of Model Size

= MNLI (400k) = MRPC (3.6 k)

an
a8
-
()
3
]
2
< g
-
a
o
124]
T8
S0 100 150 200 250 300

Transformer Params (Millions)

It seems BERT cannot benefit that much from scaling;

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1204/slides/Jacob_Devlin_ BERT.pdf



—e— LaMDA

(A) Mod. arithmetic
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Reason: generation scales, but no for discrimination

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1204/slides/Jacob_Devlin_ BERT.pdf



From BERT/ELMO to more
‘general™ language models



Overview

Model Type Architecture Task

NLM [25] static 1-layer MLP (a,b) > c

predicting the next word
b—c, b-—>a

Skip-Gram [200] static 1-layer MLP Kl . _
predicting neighboring words
CBow [200] static 1-layer MLP (&, C,) —> f
predicting central words
- 1 T -> 1 Z i g
Glove [227] static 1-layer MLP " iy 2 LB )
predicting the log co-occurrence count
ELMO [230] contextualized LSTM (mbid)—e (edeb)—>g
bi-directional language model
BERT [66], Roberta [185] conitestudlize Transformers (a, [mask|,c) — (b, )
ALBERT [154], XLNET [351] or Transformer-XL predicting masked words
Electra [54] contextualized Transformer e 1? O’. 1)
replaced token prediction
T5 [241] (a,B,¢,) — (d,&)

textualized Transfi e
BART [158] = predicting the sequence

(a,b, c,d) — e autoregressively
predicting the next word

GPT [240] contextualized Transformers

Benyou Wang et.al. Pre-trained Language Models in Biomedical Domain: A Systematic Survey. ACM Computing Survey.



Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

TSt L dowe a1 buld Sron reprsenations

—=7] Encoder- » Good parts of decoders and encoders?
=2 Decoders » What’s the best way to pretrain them?

 Language models! What we’ve seen so far.
L2227 Decoders » Nice to generate from; can’t condition on future words

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf



RoBERTA

e RoBERTa: A Robustly Optimized BERT Pretraining Approach
(Liu et al, University of Washington and Facebook, 2019)

e Trained BERT for more epochs and/or on more data

o Showed that more epochs alone helps, even on same data

O More data also helps

® Improved masking and pre—training data slightly

MNLI QNLI QQP RTE SST MRPC CoLA STS WNLI Avg

Single-task single models on dev

BERT | srce 86.6/- 923 913 704 932 88.0 60.6  90.0

XLNet; arge 89.8/- 939 91.8 838 956 8§92 63.6 91.8 -
RoBERTa 90.2/90.2 94.7 922 86.6 964 90.9 680 924 913



SpanBERT

RoBERTa: SpanBERT: Improving Pre-training
and Predicting Spans (Joshi et al, 2019)

Mask a whole Span

3
an  American foothall game

t t t t
(o ] e J e J ] s ] Do ] o] oo ] o] a0 ][] (302 ]
t ottt t t t t t t t

| Transformer Encoder |

t ottt t t t t 1 t t
|Su|JL'r| | Bowl I| 50 || wa.".l I[Mnslt]l |I'3\1..-.£h'.]| |I'M.-|SKII |I'M.'\SIC'I| |<|.e:lc:r|ni|-e:|| the I ||_‘hu|l||ri.0|||

Span masking helbs

SQuAD 1.1 SQuAD 2.0

EM Fl EM Fl
Human Perf. 823 012 868 H94
Google BERT 843 0913 20.0 H33
Our BERT 865 926 828 H59

Our BERT-1seq 875 033 838 Ho6.b
SpanBERT 888 WMo 85.7 B&.7

by Representing



BERT—-wwm

® Pre—Training with Whole Word Masking for Chinese, Cui et.al.
2019

® Mask a whole Chinese work

Chinese English
Original Sentence [ RE S ERGRA - — iR aHE . we use a language model to predict the probability of the next word.
+ CWS EE B R Wl T —4 i Y 8 . -
+ BERT Tokenizer BEEEMEMMT — 4w M8 E. we use a language model to pre ##di ##ct the pro ##ba ##bility of the next word .
Original Masking s M)A R M — i A we use a language [M] to [M] ##di ##ct the pro [M] ##bility of the next word .
+ WWM 5 = [M][M] # [M][M] F — 1~ 18 @ 2 . we use a language [M] to [M] [M] [M] the [M] [M] [M] of the next word .
++ N-gram Masking  [M] [M] [M] [M] 3 [M] [M] T — -~ id i 8 % . we use a [M] [M] to [M] [M] [M] the [M] [M] [M] [M] [M] next word .

+++ Mac Masking BEBEREMALT — 1 HE M JLE. we use a text system to ca ##lc ##ulate the po #¥si ##bility of the next word .




ERNIE

e ERNIE: Enhanced Language Representation with Informative
Entities. Zhang et.al 2019

® Mask Informative Entities




ALBERT

e ALBERT: Alite BERT for Self-supervised Learning of Language
Representations (Lan et al, Google and TTIChicago,2019)

® Innovation #1: Factorized embedding

parameterization
o Use small embedding size (e.g., 128) and then project it to

Transformer hidden size (e.g., 1024) with parameter matrix

1024 128 1024

100k 100k 128




ALBERT

® Innovation #2: Cross—layer parameter sharing

o Share all parameters between Transformer layers

® Results:

Models MNLI QNLI QQP RTE SST MRPC ColLA STS
Single-task single models on dev

BERT-large 86.6 92.3 913 704 932 88.0 60.6  90.0
XLNet-large 89.8 93.9 91.8 83.8 956 89.2 63.6 91.8
RoBERTa-large 90.2 04.7 92.2 86.6 964 90.9 63.0 924
ALBERT (1M) 90.4 95.2 92.0 88.1 968 90.2 68.7 92.7
ALBERT (1.5M)  90.8 953 922 892 96.9 90.9 714  93.0

e ALBERT is light in terms of parameters, not speed

Model Parameters SQuADI.1 SQuAD2.0 MNLI SST-2 RACE | Avg | Speedup
base 108M 90.4/83.2 80.4/77.6 84.5 92.8 68.2 | 82.3 4.7x
BERT large 334M 92.2/85.5 85.0/82.2 86.6 93.0 139 |852 1.0
base 12M 89.3/82.3 80.0/77.1 81.6 90.3 64.0 | 80.1 5.6x
ALBERT large 18M 90.6/83.9 82.3/79.4 83.5 917 68.5 | 824 7%
xlarge 60M 92.5/86.1 86.1/83.1 86.4 92.4 748 | 85.5 0.6x
xxlarge 235M 94.1/88.3  88.1/85.1 88.0 95.2 82.3 | 88.7 0.3x




ELECTRA

o ELECTRA: Pre-training Text Encoders as
Discriminators Rather Than Generators (Clark et al,

2020)
® J[rain model to discriminate locally plausible text

from real text

sample
the —> [MASK] —> --> the —> —> original
chef — chef — Gon erator chef —> Discriminator —> original
cooked —> [MASK] —>{ (typically a f-> ate —> (ELECTRA) [ replaced
the —» the —»| small MLM) the — —> original
meal — meal —> meal —> —> original




Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

* Gets bidirectional context — can condition on future!
* How do we train them to build strong representations?

53 Decoders  * What's the best way to pretrain them?

 Language models! What we’ve seen so far.
L2227 Decoders » Nice to generate from; can’t condition on future words

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf



Pretraining encoder-decoders: what pretraining objective to use?

For encoder-decoders, we could do something like language modeling, but where a prefix
of every input is provided to the encoder and is not predicted.

hl, c o ,hT = Encoder ('wl, co ,wT)
hT_|_1, .« .,hg = Decoder('wl, e ooy WT, hl, .o .,hT)

The encoder portion benefits from bidirectional context;
The decoder portion is used to train the whole model through
language modeling. Wi, oo, Wrp

[Raffel et al., 2018]

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf


https://arxiv.org/pdf/1910.10683.pdf

Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

Replace different-length spans from the input with Tar;netsf ST
unigue placeholders; decode out the spans that were obebllnadble
removed!

Original text

Thank you fef inviting me to your party [z}st week.

This is implemented in text preprocessing: it’s
still an objective that looks like language -

modeling at the decoder side. Thank you <X> me to your party V> week.

[Raffel et al., 2018]

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf


https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf

Pretraining encoder-decoders: what pretraining objective to use?

A fascinating property of T5: it can be finetuned to answer a wide range of questions,
retrieving knowledge from its parameters.

President Franklin D.
Pre-training Roosevelt was born
———————————————————— —< 1in January 1882. O D (- O -

.
Fine-tuning \p\»

When was Franklin D.
[ Roosevelt born? - IS 1882 l

We may see a important concept called instruction tuning, later used in large language models

[Raffel et al., 2018]

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf


https://arxiv.org/pdf/1910.10683.pdf

Pretraining encoder-decoders: what pretraining objective to use?

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. https://aclanthology.org/2020.acl-main.703.pdf

B D ABCDE

¢ 4 £4 544
Bidirectional Autoregressive

Encoder Decoder
Frrss R
A_C_E <ss>ABCD

(a) BERT: Random tokens are replaced with masks, and (b) GPT: Tokens are predicted auto-regressively, meaning
the document is encoded bidirectionally. Missing tokens GPT can be used for generation. However words can only
are predicted independently, so BERT cannot easily be condition on leftward context, so it cannot learn bidirec-

used for generation. tional interactions.
ABCDE
REEE:
Bidirectional Autoregressive
Encoder | Decoder
FFrfe FTfrs
A_B_E <s>ABCD

(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a
document has been corrupted by replacing spans of text with a mask symbols. The corrupted document (left) is encoded with
a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder.
For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final
hidden state of the decoder.

Figure 1: A schematic comparison of BART with BERT (Devlin et al., 2019) and GPT (Radford et al., 2018).

[Raffel et al., 2018]

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf


https://arxiv.org/pdf/1910.10683.pdf

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

e Gets bidirectional context — can condition on future!

Encoders * How do we train them to build strong representations?
o7 Encoder- » Good parts of decoders and encoders?
=20 Decoders « What’s the best way to pretrain them?

* Language models! What we’ve seen so far.
L2771 Decoders  ENice fo generate from; can’t condition on futuire words

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf



Back to the language model
(next word prediction)



Pretraining decoders

When using language model pretrained decoders, we can ignore that they were trained

to model p(w; | wy.t—1)

We can finetune them by training a
classifier on the last word’s hidden state.

hi, ..., hy =Decoder(w;,...,wr)
y~ Ahr +b

Where 4 and 4 are randomly initialized and
specified by the downstream task.

Gradients backpropagate through the whole
network.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

©/@?
Linear A,b
|
hy, ..., hy

[Note how the linear layer hasn’t been
pretrained and must be learned from scratch.]



Pretraining decoders

It’s natural to pretrain decoders as language models and then
use them as generators, finetuning their pe(w: | wi:t—1)

This is helpful in tasks where the output W2 W3 Wy W5 We
is a sequence with a vocabulary like that N OEm oEn mmEmAb
at pretraining time! hi, ..., hy
* Dialogue (context=dialogue history)
« Summarization (context=document) IW
hi,...,hr = Decoder(ws,...,wr)
wt ~ Aht_]_ _I_ b W1 Wy W3 Wy Wsg
Where A, b were pretrained in the [Note how the linear layer has been pretrained.]

language model!

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf



Increasingly convincing generations (GPT2) [Radford et al., 2018]

We mentioned how pretrained decoders can be used in their capacities as language
models. GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to
produce relatively convincing samples of natural language.

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population. after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf



GPT-3, In-context learning, and very large models

So far, we’ve interacted with pretrained models in two ways:
« Sample from the distributions they define (maybe providing a prompt)
* Fine-tune them on a task we care about, and take their predictions.

Very large language models seem to perform some kind of learning without
gradient steps simply from examples you provide within their contexts.

GPT-3 Is the canonical example of this. The largest T5 model had 11
billion parameters. GPT-3 has 175 billion parameters.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf



_M (next word prediction) Is scalable

_M does not need annotations

_M is simple such that it is easily to adapt it many tasks
_M could model human thoughts

_M is efficient to capture knowledge (Imagine use images to record
Knowledge?)

Humans do LM everyday (do next-word/ next-second prediction)




What can we learn from reconstructing the input?

| was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21,

Overall, the value | got from the two hours watching it was the sum total of the
popcorn and the drink. The movie was .

The woman walked across the street, checking for traffic over _ shoulder.

| went to the ocean to see the fish, turtles, seals, and .

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf
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Tutorial 1: Introduction to Overleatf,
GitHub, Python, and Pytorch



Pytorch: Neural Network — Forward &
Backward Propagation
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Parameter Update — Gradient Descent
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